

Fifth Semester B.E. Degree Examination, June/July 2015 Information Theory and Coding

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- 1 a. Derive an expression for average information content (entropy) of long independent messages. (05 Marks)
 - b. Define information [I], average information, information rate, symbol rate and mutual information. (05 Marks)
 - c. For the Markov source model shown below compute initial probabilities, state entropy source entropy and show that $G_1 > G_2 > H(s)$. (10 Marks)

Fig.Q.1(c)
$$A \xrightarrow{c \nu_4} B^{3/4}$$

2 a. Explain Shannon's noiseless encoding algorithm.

(04 Marks)

b. Using Shannon's binary encoding algorithm, find all the code words for the symbols given below also find its efficiency and redundancy. Given: (08 Marks)

 S₀
 S₁
 S₂
 S₃
 S₄

 0.55
 0.15
 0.15
 0.1
 0.05

State all the properties of entropy and prove the external property.

(08 Marks)

3 a. For a channel whose matrix is as given below for which $P(x_1) = 1/2$; $P(x_2) = P(x_3) = 1/4$ and $r_s = 10,000$ sym/sec. Find H(x), A(y), H(x, y), H(x/y), H(y/x), I(x,y). Also find information rate at transmitter (R_{in}) and information rate at receiver (R_t) , capacity, efficiency and redundancy.

$$P(y/x) = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.1 & 0.8 & 0.1 \\ 0 & 0.2 & 0.8 \end{bmatrix}.$$
 (10 Marks)

- b. A source produces 9 symbols with probabilities {0.36, 0.24, 0.12, 0.08, 0.08, 0.07, 0.03, 0.02}.
 - Construct Huffman binary code and determine its efficiency (η) and redundancy (R).
 - ii) Construct Huffman ternary code and find its efficiency (η) and redundancy (R).

(10 Marks)

- 4 a. State and explain Shannon Hartley law. Derive an expression for the upper limit of the channel capacity. (07 Marks)
 - b. Define mutual information and explain all the properties of mutual information. (06 Marks)
 - c. Two noisy channels are cascaded whose channel matrices are given by

$$P(y/x) = \begin{bmatrix} 1/5 & 1/5 & 3/5 \\ 1/2 & 1/3 & 1/6 \end{bmatrix} \qquad P(z/y) = \begin{bmatrix} 0 & 3/5 & 2/5 \\ 1/3 & 2/3 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix} \text{ with } P(x_1) = P(x_2) = 1/2, \text{ find}$$

the over all mutual information I(x,z) and I(x,y).

(07 Marks)

PART - B

- 5 a. Draw the block diagram of a digital communication system and explain the function of each block.

 (06 Marks)
 - b. The parity check bits of a (7, 4) Hamming codes are generated by

$$c_5 = d_1 + d_3 + d_4$$

$$c_6 = d_1 + d_2 + d_3$$

$$c_7 = d_2 + d_3 + d_4$$

where d₁, d₂, d₃ and d₄ are message bits

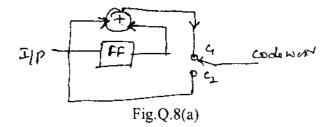
- i) Find generator matrix (G) and parity check matrix [H] for this code.
- ii) Prove that $GH^T = 0$.
- iii) Find the minimum weight of this code.
- iv) Find error detecting and correcting capability.
- v) Draw encoder circuit and syndrome circuit for the same.

(12 Marks)

c. Compare fixed length code and variable length code.

(02 Marks)

- 6 a. A (15, 5) linear cyclic code has a generator polynomial $g(x) = 1 + x + x^2 + x^4 + x^5 + x^8 + x^{10}$.
 - Draw the cyclic encoder and find codeword for the message polynomial. $D(x) = 1 + x^2 + x^4$ in systematic form by listing the states of the shift register.
 - ii) Draw the syndrome calculator circuit for given g(x). (12 Marks)
 - b. For the given generator polynomial find generator matrix and parity check matrix and find codeword for (7, 3) Hamming code and its hamming weight $g(x) = 1 + x + x^2 + x^4$.


(08 Marks)

- Write short notes on:
 - a. BCH codes
 - b. Shortened cyclic code
 - c. RS code
 - d. Golay code
 - e. Burst error correcting code.

(20 Marks)

- 8 a. Consider the convolutional encoder shown below:
 - i) Draw the state diagram
 - ii) Draw code tree
 - iii) Find the codeword for the message sequence 10111.

(10 Marks)

- b. For a (2, 1, 2) convolutional encoder with generator sequence $g^1 = 111$ and $g^{(2)} = 101$.
 - i) Draw convolutional encoder circuit.
 - ii) Find the codeword for the message sequence 10111 using time domain approach and transfer domain approach. (10 Marks)

* * * * *